Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1553, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091579

RESUMO

Globally increasing levels of artificial light at night (ALAN) are associated with shifting rhythms of behaviour in many wild species. However, it is unclear whether changes in behavioural timing are paralleled by consistent shifts in the molecular clock and its associated physiological pathways. Inconsistent shifts between behavioural and molecular rhythms, and between different tissues and physiological systems, disrupt the circadian system, which coordinates all major body functions. We therefore compared behavioural, transcriptional and metabolomic responses of captive great tits (Parus major) to three ALAN intensities or to dark nights, recording activity and sampling brain, liver, spleen and blood at mid-day and midnight. ALAN advanced wake-up time, and this shift was paralleled by advanced expression of the clock gene BMAL1 in all tissues, suggesting close links between behaviour and clock gene expression across tissues. However, further analysis of gene expression and metabolites revealed that clock shifts were inconsistent across physiological systems. Untargeted metabolomic profiling showed that only 9.7% of the 755 analysed metabolites followed the behavioural shift. This high level of desynchronization indicates that ALAN disrupted the circadian system on a deep, easily overlooked level. Thus, circadian disruption could be a key mediator of health impacts of ALAN on wild animals.


Assuntos
Poluição Luminosa
2.
Int J Parasitol ; 51(6): 441-453, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713652

RESUMO

Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs.


Assuntos
Anopheles , Antimaláricos , Animais , Antimaláricos/uso terapêutico , Carbono , Oxirredução , Plasmodium falciparum/genética
3.
PLoS One ; 12(12): e0189072, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267346

RESUMO

Trichomonas vaginalis and Tritrichomonas foetus are pathogens that parasitise, respectively, human and bovine urogenital tracts causing disease. Using LC-MS, reference metabolomic profiles were obtained for both species and stable isotope labelling with D-[U-13C6] glucose was used to analyse central carbon metabolism. This facilitated a comparison of the metabolic pathways of T. vaginalis and T. foetus, extending earlier targeted biochemical studies. 43 metabolites, whose identities were confirmed by comparison of their retention times with authentic standards, occurred at more than 3-fold difference in peak intensity between T. vaginalis and T. foetus. 18 metabolites that were removed from or released into the medium during growth also showed more than 3-fold difference between the species. Major differences were observed in cysteine and methionine metabolism in which homocysteine, produced as a bi-product of trans-methylation, is catabolised by methionine γ-lyase in T. vaginalis but converted to cystathionine in T. foetus. Both species synthesise methylthioadenosine by an unusual mechanism, but it is not used as a substrate for methionine recycling. T. vaginalis also produces and exports high levels of S-methylcysteine, whereas only negligible levels were found in T. foetus which maintains significantly higher intracellular levels of cysteine. 13C-labeling confirmed that both cysteine and S-methylcysteine are synthesised by T. vaginalis; S-methylcysteine can be generated by recombinant T. vaginalis cysteine synthase using phosphoserine and methanethiol. T. foetus contained higher levels of ornithine and citrulline than T. vaginalis and exported increased levels of putrescine, suggesting greater flux through the arginine dihydrolase pathway. T. vaginalis produced and exported hydroxy acid derivatives of certain amino acids, particularly 2-hydroxyisocaproic acid derived from leucine, whereas negligible levels of these metabolites occurred in T. foetus.


Assuntos
Aminoácidos/metabolismo , Caproatos/metabolismo , Cistationina/biossíntese , Cisteína/análogos & derivados , Metabolômica , Trichomonas vaginalis/metabolismo , Tritrichomonas foetus/metabolismo , Animais , Bovinos , Cromatografia Líquida , Cisteína/biossíntese , Glicólise , Humanos , Marcação por Isótopo , Espectrometria de Massas , Trichomonas vaginalis/genética , Tritrichomonas foetus/genética
4.
J Proteome Res ; 14(1): 557-66, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25361234

RESUMO

Psoriasis is an immune-mediated highly heterogeneous skin disease in which genetic as well as environmental factors play important roles. In spite of the local manifestations of the disease, psoriasis may progress to affect organs deeper than the skin. These effects are documented by epidemiological studies, but they are not yet mechanistically understood. In order to provide insight into the systemic effects of psoriasis, we performed a nontargeted high-resolution LC-MS metabolomics analysis to measure plasma metabolites from individuals with mild or severe psoriasis as well as healthy controls. Additionally, the effects of the anti-TNFα drug Etanercept on metabolic profiles were investigated in patients with severe psoriasis. Our analyses identified significant psoriasis-associated perturbations in three metabolic pathways: (1) arginine and proline, (2) glycine, serine and threonine, and (3) alanine, aspartate, and glutamate. Etanercept treatment reversed the majority of psoriasis-associated trends in circulating metabolites, shifting the metabolic phenotypes of severe psoriasis toward that of healthy controls. Circulating metabolite levels pre- and post-Etanercept treatment correlated with psoriasis area and severity index (PASI) clinical scoring (R(2) = 0.80; p < 0.0001). Although the responsible mechanism(s) are unclear, these results suggest that psoriasis severity-associated metabolic perturbations may stem from increased demand for collagen synthesis and keratinocyte hyperproliferation or potentially the incidence of cachexia. Data suggest that levels of circulating amino acids are useful for monitoring both the severity of disease as well as therapeutic response to anti-TNFα treatment.


Assuntos
Aminoácidos/sangue , Etanercepte/farmacologia , Metabolômica/métodos , Psoríase/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Aminoácidos/efeitos dos fármacos , Cromatografia Líquida/métodos , Estudos de Coortes , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Análise Multivariada , Psoríase/genética , Índice de Gravidade de Doença
5.
PLoS Pathog ; 10(1): e1003876, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453970

RESUMO

Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in the Plasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10(Δpepc) ), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10(Δpepc) had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using (13)C-U-D-glucose and (13)C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10(Δpepc) and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of (13)C,(15)N-U-glutamine was similar in both parasite lines, although the flux was lower in D10(Δpepc); it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery.


Assuntos
Ácidos Acíclicos/metabolismo , Eritrócitos/diagnóstico por imagem , Fosfoenolpiruvato Carboxilase/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Eritrócitos/metabolismo , Genoma de Protozoário/fisiologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/enzimologia , Malária Falciparum/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Via de Pentose Fosfato/fisiologia , Fosfoenolpiruvato Carboxilase/antagonistas & inibidores , Fosfoenolpiruvato Carboxilase/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Radiografia
6.
J Lipid Res ; 54(7): 1812-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23670529

RESUMO

Lipidome profile of fluids and tissues is a growing field as the role of lipids as signaling molecules is increasingly understood, relying on an effective and representative extraction of the lipids present. A number of solvent systems suitable for lipid extraction are commonly in use, though no comprehensive investigation of their effectiveness across multiple lipid classes has been carried out. To address this, human LDL from normolipidemic volunteers was used to evaluate five different solvent extraction protocols [Folch, Bligh and Dyer, acidified Bligh and Dyer, methanol (MeOH)-tert-butyl methyl ether (TBME), and hexane-isopropanol] and the extracted lipids were analyzed by LC-MS in a high-resolution instrument equipped with polarity switching. Overall, more than 350 different lipid species from 19 lipid subclasses were identified. Solvent composition had a small effect on the extraction of predominant lipid classes (triacylglycerides, cholesterol esters, and phosphatidylcholines). In contrast, extraction of less abundant lipids (phosphatidylinositols, lyso-lipids, ceramides, and cholesterol sulfates) was greatly influenced by the solvent system used. Overall, the Folch method was most effective for the extraction of a broad range of lipid classes in LDL, although the hexane-isopropanol method was best for apolar lipids and the MeOH-TBME method was suitable for lactosyl ceramides.


Assuntos
LDL-Colesterol/química , LDL-Colesterol/isolamento & purificação , Solventes/química , Adulto , Feminino , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade
7.
Bioanalysis ; 4(18): 2227-37, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23046265

RESUMO

BACKGROUND: Confounding factors in the analysis of human breath by thermal desorption GC-MS are reviewed, with special emphasis on the high water levels encountered in human breath samples. RESULTS: Multilinear regression optimization of breath sampling factors, along with the selection of ubiquitous sample components used as retention-time standards, enabled data registration based on retention indexing and mass spectral alignment. This was done on a component-by-component basis. The methodology developed reconciled participant safety, artefacts from accelerated hydrolysis of the stationary phase and the destructive nature of thermal desorption. Furthermore, using ubiquitous methylated cyclic-siloxanes in the thermal desorption-GC-MS chromatograms enabled secondary retention indexing for each chromatogram. This methodology enables the creation of a 'breath matrix' that is based on a combination of retention indexing and the mass spectral registration of isolated peaks. CONCLUSION: This approach facilitated more efficient data modeling and a case study from a 22-participant (10 male, 12 female) stress-intervention experiment. Principal component analysis of data registered by retention indexing did not classify successfully stressed from unstressed states. By contrast, adoption of a breath matrix approach enabled 95% separation.


Assuntos
Expiração , Metabolômica/métodos , Respiração , Compostos Orgânicos Voláteis/análise , Estudos de Casos e Controles , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Análise de Componente Principal , Análise de Regressão , Projetos de Pesquisa , Compostos Orgânicos Voláteis/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...